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Abstract

Tensor decomposition has recently become a popular method of multi-dimensional data

analysis in various applications. The main interest in tensor decomposition is for dimen-

sionality reduction, approximation or subspace purposes. However, the emergence of

“big data” now gives rise to increased computational complexity for performing tensor

decomposition. In this thesis, motivated by the advantages of the generalized minimum

noise subspace (GMNS) method, recently proposed for array processing, we proposed

two algorithms for principal subspace analysis (PSA) and two algorithms for tensor de-

composition using parallel factor analysis (PARAFAC) and higher-order singular value

decomposition (HOSVD). The proposed decompositions can preserve several desired

properties of PARAFAC and HOSVD while substantially reducing the computational

complexity. Performance comparisons of PSA and tensor decompositions between us-

ing our proposed methods and the state-of-the-art methods are provided via numerical

studies. Experimental results indicated that the proposed methods are of practical

values.

Index Terms: Generalized minimum noise subspace, Principal subspace analysis, Ten-

sor decomposition, Parallel factor analysis, Tucker decomposition, High-order singular

value decomposition.
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Chapter 1

Introduction

Over the last two decades, the number of large-scale datasets have been increasingly

collected in various fields and can be smartly mined to discover new valuable infor-

mation, helping us to obtain deeper understanding of the hidden values [6]. Many

examples are seen in physical, biological, social, health and engineering science appli-

cations, wherein large-scale multi-dimensional, multi-relational and multi-model data

are generated. Therefore, data analysis techniques using tensor decomposition now

attract a great deal of attention from researchers and engineers.

A tensor is a multi-dimensional array and often considered as a generalization

of a matrix. As a result, tensor representation gives a natural description of multi-

dimensional data and hence tensor decomposition becomes a useful tool to analyze

high-dimensional data. Moreover, tensor decomposition brings new opportunities for

uncovering hidden and new values in the data. As a result, tensor decomposition has

been used in various applications. For example, in neuroscience, brain signals are inher-

ently multi-way data in general, and spatio-temporal in particular, due to the fact that

they can be monitored through different brain regions at different times. In particular,

an electroencephalography (EEG) dataset can be represented by a three-way tensor

with three dimensions of time, frequency and electrode, or even by multi-way tensors

when extra dimensions such as condition, subject and group are also considered. Ten-

sor decomposition can be used to detect abnormal brain activities such as epileptic
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seizures [7], to extract features of Alzheimer’s disease [8] or other EEG applications,

as reviewed in [9].

1.1 Tensor Decompositions

Two widely used decompositions for tensors are parallel factor analysis (PARAFAC)

(also referred to as canonical polyadic decomposition) and Tucker decomposition. PARAFAC

decomposes a given tensor into a sum of rank-1 tensors. Tucker decomposition decom-

poses a given tensor into a core tensor associated with a set of matrices (called factors)

which are used to multiply along each mode (way to model a tensor along a particular

dimension).

In the literature of tensors, many algorithms have been proposed for tensor decom-

position. We can categorize them into three main approaches, respectively based on

divide-and-conquer, compression, and optimization. The first approach aims to divide

a given tensor into a finite number of sub-tensors, then estimate factors of the sub-

tensors and finally combine them together into true factors. The central idea behind

the second approach is to reduce the size of a given tensor until it becomes manageable

before computing a specific decomposition of the compressed tensor, which retains the

main information of the original tensor. In the third approach, tensor decomposition is

cast into optimization and is then solved using standard optimization tools. We refer

the reader to surveys in [10–12] for further details on the different approaches.
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1.2 Objectives

In this thesis, we focus on the divide-and-conquer approach for PARAFAC and high-

order singular value decomposition (HOSVD) of three-way tensors. HOSVD is a spe-

cific orthogonal form of Tucker decomposition. Examples of three-way tensors are nu-

merous. (Image-row× image-column× time) tensors are used in video surveillance, hu-

man action recognition and real-time tracking [13–15]. (Spatial-row × spatial-column

× wavelength) tensors are used for target detection and classification in hyperspec-

tral image applications [16, 17]. (Origin × destination × time) tensors are used in

transportation networks to discover the spatio-temporal traffic structure [18]. (Time

× frequency × electrode) tensors are used in EEG analysis [7].

Recently, generalized minimum noise subspace (GMNS) was proposed by Nguyen et

al. in [19] as a good technique for subspace analysis. This method is highly beneficial

in practice because it not only substantially reduces the computational complexity in

finding bases for these subspaces, but also provides high estimation accuracy. Several

efficient algorithms for principal subspace analysis (PSA), minor subspace analysis

(MSA), PCA utilizing the GMNS were proposed and shown to be applicable in various

applications. This motivates us to propose in this thesis new implementations for

tensor decomposition based on GMNS.

1.3 Contributions

The main contributions of this thesis are summarized as follows. First, by expressing

the right singular vectors obtained from singular value decomposition (SVD) in terms

3



of principal subspace, we derive a modified GMNS algorithm for PSA with running time

faster than the original GMNS, while still retaining the subspace estimation accuracy.

Second, we introduce a randomized GMNS algorithm for PSA that can deal with

several matrices by performing the randomized SVD.

Third, we propose two algorithms for PARAFAC and HOSVD based on GMNS.

The algorithms are highly beneficial and easy to implement in practice, thanks to its

parallelized scheme with a low computational complexity. Several applications are

studied to illustrate the effectiveness of the proposed algorithms.

1.4 Thesis organization

The structure of the thesis is organized as follows. Chapter 2 provides some background

for our study, including two kinds of algorithms for PSA and tensor decomposition.

Chapter 3 presents modified and randomized GMNS algorithms for PSA. Chapter 4

presents the GMNS-based algorithms for PARAFAC and HOSVD. Finally, Chapter 5

show experimental results. Chapter 6 gives conclusions on the developed algorithms.
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Chapter 2

Preliminaries

In this chapter, we describe a brief review of tensors, related mathematical operators in

multilinear algebra (e.g., tensor additions and multiplications). In addition, a divide-

and-conquer algorithm for PARAFAC called alternating least-square (ALS) is also

provided that is considered as fundamental of our proposed method. Moreover, it is of

interest to first explain the central idea of the method before showing how GMNS can

be used for tensor decomposition.

2.1 Tensor Notations and Definitions

Follow notations and definitions presented in [1], the mathematical symbols used in

this thesis is summarized in the Table 2.1. We use lowercase letters (e.g., a), boldface

lowercase letters (e.g., a), boldface capital letters (e.g., A) and bold calligraphic letters

(e.g., A) to denote scalars, vectors, matrices and tensors respectively. For operators

on a n-order tensor A, A(k) denotes the mode-k unfolding of A, k ≤ n. The k-mode

product of A with a matrix U is denoted by A ×k U. The Frobenius norm of A is

denoted by ‖A‖F , meanwhile 〈A,B〉 denotes the inner product of A and a same-sized

tensor B. Specifically, definitions of these operators on A ∈ RI1×I2···×In used in this

thesis are summarized as follows:

The mode-k unfolding A(k) of A is a matrix in vector space RIk×(I1...Ik−1Ik+1...In), in

5



Table 2.1: Mathematical Symbols

a, a,A,A scalar, vector, matrix and tensor

AT the transpose of A

AT the pseudo-inverse of A

A(k) the mode-k unfolding of A

‖A‖F the Frobenius norm of A

a ◦ b the outer product of a and b

A⊗B the Kronecker product of A and B

A×k U the k-mode product of the tensor A with a matrix U

〈A,B〉 the inner product of A and B

which each element of A(k) is defined by

A(k)(ik, i1 . . . ik−1ik+1 . . . in) = A(i1, i2, . . . , in).

where (ık, i1 . . . ik−1ik+1 . . . in) denotes the row and column of the matrix A(k).

The k-mode product of A with a matrix U ∈ Rrk×Ik yields a new tensor B ∈

RI1×···×Ik−1×rk×Ik+1···×In such that

B = A×k U⇔ B(k) = UA(k).

As a result, we derive a desired property for the k-mode product as follows

A×k U×l V = A×l V ×k U for k 6= l,

A×k U×k V = A×k (VU).

The inner product of two n-order tensors A,B ∈ RI1×I2···×In is defined by

〈A,B〉 =

I1∑
i1=1

· · ·
In∑

in=1

A(i1, i2, . . . , in)B(i1, i2, . . . , in).
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The Frobenius norm of a tensor A ∈ RI1×I2···×In is defined by the inner product of

A with itself

‖A‖F =
√
〈A,A〉.

For operators on a matrix A ∈ RI1×I2 , AT and AT denote the transpose and

the pseudo-inverse of A respectively. The Kronecker product of A with a matrix

B ∈ RJ1×J2 , denoted by A⊗B, yields a matrix C ∈ RI1J1×I2J2 defined by

C = A⊗B =


a1,1B . . . a1,I2B

...
. . .

...

aI1,1B . . . aI1,I2B

 .

For operators on a vector a ∈ RI1×1, the outer product of a and vector b ∈ RI2×1,

denoted by a ◦ b, yields a matrix C ∈ RI1×I2 defined by

C = a ◦ b = abT =

[
b1a b2a . . . bI2a

]
.

2.2 PARAFAC based on Alternating Least-Squares

Several divide-and-conquer based algorithms have been proposed for PARAFAC such

as [20–25]. The central idea of the approach is to divide a tensor X into k parallel sub-

tensors Xi, then estimate the factors (loading matrices) of the sub-tensors, and then

combine them together into the factors of X . In this section, we would like to describe

the algorithm proposed by Nguyen et al. in [23], namely parallel ALS-based PARAFAC

summarized in Algorithm 1, which has motivated us to develop new algorithms in this

thesis.

7



Algorithm 1: Parallel ALS-based PARAFAC [23]

Input: Tensor X ∈ RI×J×K , target rank p, k DSP units

Output: Factors A ∈ RI×p,B ∈ RJ×p,C ∈ RK×p

1 function

2 Divide X into k sub-tensors X1,X2, . . . ,Xk

3 Compute A1,B1,C1 of X1 using ALS

4 Compute factors of sub-tensors: // updates can be done in parallel

5 for i = 2→ k do

6 Compute Ai,Bi and Ci of Xi using ALS

7 Rotate Ai,Bi and Ci // (2.4)

8 Update A,B,C // (2.5)

9 return A,B,C

Without loss of generality, we assume that a tensor X is divided into k sub-tensors

X1,X2, . . . ,Xk, by splitting the loading matrix C into C1,C2, . . . ,Ck so that the cor-

responding matrix presentation of the sub-tensor Xi can be determined by

Xi = (Ci �A)BT . (2.1)

Here, Xi is considered as a tensor composed of frontal slices of X , while Xi is to present

the sub-matrix of its matrix representation X of X .

Exploiting the fact that the two factors A and B are unique when decomposing

the sub-tensors, thanks to the uniqueness of PARAFAC (see [11, Section IV] and [12,

Section III]), gives

Xi = Ii ×1 A×2 B×3 Ci. (2.2)

As a result, we here need to look for an updated rule to concatenate the matrices Ci

into the matrix C, while A and B can be obtained directly from PARAFAC of X1.

In particular, the algorithm can be described as follows. First, by performing

8



PARAFAC of these sub-tensors, the factors Ai,Bi, and Ci can be obtained from de-

composing

Xi = (Ci �Ai)B
T
i , (2.3)

using the Alternative Least-Squares (ALS) algorithm [26]. Then, Ai,Bi,Ci are rotated

in the directions of X1 to yield

Ai ← AiPiD
(A)
i , (2.4a)

Bi ← BiPiD
(B)
i , (2.4b)

Ci ← CiPiD
(C)
i , (2.4c)

where the permutation matrices Pi ∈ RR×R and scale matrices D
(·)
i ∈ RR×R are

computed below

Pi(u, v) =


1, for maxv

|〈Ai(:, u),A1(:, v)〉|
‖Ai(:, u)‖‖A1(:, v)‖ ,

0, otherwise,

D
(A)
i (u, u) =

‖A1(:, v)‖
|〈Ai(:, u),A1(:, v)〉| ,

D
(B)
i (u, u) =

‖B1(:, v)‖
|〈Bi(:, u),B1(:, v)〉| ,

D
(C)
i (u, u) =

(
D

(A)
i (u, u)D

(B)
i (u, u)

)−1
.

Finally, we obtain the factors of X

A← A1,B← B1, (2.5a)

C←
[
CT

1 CT
2 . . . CT

k

]T
. (2.5b)

9



Algorithm 2: GMNS-based PSA [19]

Input: Matrix X ∈ Cn×m, target rank p, k DSP units
Output: Principal subspace matrix WX ∈ Rn×p of X

1 initilization
2 Divide X into k sub-matrices Xi

3 Form covariance matrix RX1 = 1
mX1X

H
1

4 Extract principal subspace W1 = eig(RX1 , p)

5 Construct matrix U1 = W#
1 X1

6 main estimate PSA : // updates can be done in parallel
7 for i = 2→ k do
8 Form covariance matrix RXi = 1

mXiX
H
i

9 Extract principal subspace Wi = eig(RXi , p)

10 Construct matrix Ui = W#
i Xi

11 Construct rotation Ti = UiU
#
1

12 Update Wi ←WiTi

13 return WX = [WT
1 WT

2 . . . WT
k ]T

2.3 Principal Subspace Analysis based on GMNS

Consider a low rank matrix X = AS ∈ Cn×m under the conditions that A ∈ Cn×p,S ∈

Cp×m with p < min(n,m), and A is full column rank.

Under the constraint of having only a fixed number k of digital signal processing

(DSP) units, the procedure of GMNS for PSA includes: dividing the matrix X into k

sub-matrices {X1,X2, . . . ,Xk}, then estimating each principal subspace matrix Wi =

AiQi of Xi, and finally combining them to obtain the principal matrix of X. Clearly,

we should choose a number of DSP units so that the size of resulting sub-matrices

Xi must be larger than rank of X, p ≤ n/k. The algorithm was proposed in [19],

summarized in Algorithm 2.

First, the principal subspace matrix Wi of Xi can be obtained from the eigenspace

10



of its corresponding covariance matrix

RXi
= E{XiX

H
i } = AiRSAH

i
EVD
= WiΛWH

i , (2.6)

where Wi = AiQi with Qi ∈ Rp×p is an unknown full rank matrix.

Given the directions of X1, we look for (k − 1) rotation matrices Ti to align the

principal axes of each Xi with these directions of X1. Specifically, let

Ui = W#
i Xi, (2.7)

Ui = (AiQi)
#AiS = Q−1

i S. (2.8)

On the other hand, combining with (2.6), the signal subspace can be determined by

W = AQ =



A1Q

A2Q

...

AkQ


=



A1Q1Q
−1
1 Q

A2Q2Q
−1
2 Q

...

AkQkQ
−1
k Q


=



W1T1

W2T2

...

WkTk


.

It then yields rotation Ti that can be computed by Ti = Q−1
i Q1. Thus, Ti can be

estimated without knowing Q1, as

Ti = Q−1
i Q1 = Q−1

i SS#Q1 = Q−1
i S(Q−1

1 S)# = UiU
#
1 .

where Ui can be easily computed, as in (2.7).

As a result, the principal subspace matrix of X can be updated as

W =
[
WT

1 (W2T2)T . . . (WkTk)T
]T

= AQ1.
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Chapter 3

Proposed Modified and Randomized GMNS

based PSA Algorithms

In this chapter, we introduce two modifications to the GMNS for PSA. In particular, by

expressing the right singular vectors obtained from SVD in terms of principal subspace,

we derive a modified GMNS algorithm for PSA with running time faster than the

original GMNS, while still retaining the subspace estimation accuracy. In addition, we

introduce a randomized GMNS algorithm for PSA that can deal with several matrices

by performing the randomized SVD [27].

3.1 Modified GMNS-based Algorithm

Consider again the low rank data matrix X = AS ∈ Rn×m for measurement, as

mentioned in Section 2.3. We first look at the true principal subspace matrix WX,

which is obtained via SVD of X, that is,

X
SVD
= WΣVH = WXUX,

where WX and UX present the left singular vectors and the right singular vectors of

X respectively.

It is therefore that the column space of A is exactly the column space of WX. In

12



Algorithm 3: Proposed modified GMNS-based PSA

Input: Matrix X ∈ Rn×m, target rank p, k DSP units
Output: Principal subspace matrix W of X

1 function
2 Divide X into k sub-matrices: X1,X2, . . . ,Xk

3 Compute SVD of X1 to obtain [W1,U1] = svd(X1)
4 // updates can be done in parallel
5 for i = 2→ k do

6 Compute Wi = XiU
#
1

7 return WX = [WT
1 WT

2 . . . WT
K ]T

particular, X can be expressed by

X = AS = AQQ−1S,

where Q is an unknown full rank matrix such that

WX = AQ,

UX = Q−1S.

From GMNS, when splitting the original matrix X into X1, . . . ,Xk sub-matrices,

suppose that the principal subspace matrix of each sub-matrix Xi can be determined

as

Xi
SVD
= WXi

UXi
,

13



where WXi
= AiQi and UXi

= Q−1
i S. We now obtain the following property:

X =



A1S

A2S

...

AkS


=



WX1Q
−1
1

WX2Q
−1
2

...

WXk
Q−1

k


S

=



WX1

WX2Q
−1
2 Q1

...

WXk
Q−1

k Q1


Q−1

1 S =



WX1

W2

...

Wk


UX1 . (3.1)

Hence, the relationship between the sub-matrices Xi and their corresponding sub-

space matrices can be given by

Xi = WiUX1 ,

Wi = XiU
#
X1
.

As a result, we derive a new implementation for performing the GMNS algorithm.

First, performing SVD of X1 to obtain

X1
SVD
= W1U1,

where W1 is the left singular vector matrix of X1 and U1 = Σ1V1 is to present its

right singular vector matrix.

Next, the principal subspace matrices of other sub-matrices Xi, i = 2, . . . , k, can be

obtained by projecting these sub-matrices onto the pseudo-inverse right singular vector

14



matrix of X1, that is,

Wi = XiU
#
1 .

Finally, the principal subspace matrix of X is obtained by concatenating the prin-

cipal subspace matrices of Xi as

W = [WT
1 WT

2 . . .WT
k ]T ,

X = WU1.

The modified GMNS algorithm for PSA can be summarized in Algorithm 3.

3.2 Randomized GMNS-based Algorithm

Although the original GMNS method in [19] provides an efficient tool for fast subspace

estimation with high accuracy, it is only useful for the type of low rank matrices

addressed in Section 2.3. This motivates us to look for an improvement on GMNS that

can deal with arbitrary matrices.

In order to apply GMNS, we here want to produce a good approximation X̂ = YZ

of the given matrix X that not only satisfies the required conditions of GMNS, but also

must cover the span and preserve important properties of X. Therefore, the matrix

Y = XΩ can be a good sketch of X where Ω is a sketching matrix like a column

selection or random projection matrix. Several studies have been proposed to solve

the problem so far; for example, we can apply randomized algorithms and sketching

techniques in [27–29] for matrices and data to estimate Y, hence Z.
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In this work, we are interested in investigating Gaussian Ω, with entries being i.i.d.

samples from N (0, 1). The Gaussian random matrix has been successfully applied in

several matrix analysis methods, such as [27, 30, 31]. It is noted that the Gaussian

random matrix has many desired properties, such as the following:

• For all vector x in the row space of X, its length will not change much if sketching

by Ω: ‖x‖2 ≈ ‖xΩ‖2;

• In general, random vectors of Ω are likely to be linear position and linearly

independent;

• There is no linear combination falling in the null space of X.

As a result, Y = XΩ is a high quality sketch and can span the range of X.

After finding a good sketch Y from the Gaussian random matrix Ω, the next

problem is considered as a low rank matrix approximation such that its result has to

hold the Frobenius norm error bound with high probability. This leads to the following

optimization problem

min
rank(Z)≤k

‖X−YZ‖2
F ≤ (1 + ε)‖X−Xk‖2

F

= (1 + ε)
N∑

i=k+1

σi(X), (3.2)

where σj(X) is the j-th singular value of X and Xk is the best rank-k approximate of

X.

Let QY contain orthogonal bases of the sketch Y of X. Clearly, since QY shares

the same the column space with Y, the optimization problem of (3.2) can be rewritten

16



as

Z? = arg min
rank(Z)≤k

‖X−QYZ‖2
F . (3.3)

The solution of (3.3) can be computed more easily as

Z? = QT
YX. (3.4)

Therefore, with QY, the Frobenius norm error in the problem (3.2) can be extended

to a stronger error measure, that is, the spectral norm error bound (we refer the reader

to [29, Section 4.3] for further details), as follows:

‖X−QYQT
YX‖2

2 ≤ (1 + ε)‖X−Xk‖2
2 = (1 + ε)σk+1(X).

From now, we have an approximate basis for the range of X, that is,

X ≈ QYQT
YX.

Let us define Ā = QT
YX, we then have

X ≈ QYĀ.

Accordingly, the principal subspace matrix WĀ of Ā can be computed by using the

original GMNS or the modified GMNS proposed in Section 3.1. Then we can estimate

the principal subspace of an arbitrary matrix X by

WX ≈ QYWĀ.

This randomized GMNS algorithm for PSA can be summarized in Algorithm 4.
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Algorithm 4: Proposed randomized GMNS-based PSA

Input: Matrix X ∈ Rn×m, target rank p, k DSP units
Output: Principal subspace matrix W of X.

1 function
2 Draw a Gaussian random matrix Ω ∈ Rm×l, l > p

3 Form the sketch Y ∈ Rn×l of X: Y = XΩ
4 Extract principal subspace Q from Y using QR decomposition
5 Construct Ā = QTX
6 Estimate WĀ of Ā using GMNS

7 return WX = QWĀ

Remark

Recall that GMNS is with a parallelized computing architecture in practice. There-

fore estimating the orthogonal basis of the sketch Y based on the QR decomposition

should be implemented in a parallelization scheme. In this work, we can parallelize

the randomized GMNS algorithm by using a distributed QR decomposition, namely

TSQR [32].

In particular, we divide X into k sub-matrices Xi in the similar way to the original

GMNS and the modified GMNS algorithms. First, we find all the sketch Yi of sub-

matrices Xi under the sketching Ω. Next, we perform standard QR decomposition

on each sub-matrix Yi to obtain Q1,i and R1,i. Then, the resulting matrices R1,i are

gathered into a single matrix R1 which is then decomposed into Q2,: again. As a

result, the original factor Q of Y can be obtained from multiplying the resulting the

Q1,: with Q2,: which can be already distributed among the DSP units. Finally, we find

the orthogonal basis of the sketch Ā = QTY by using the original GMNS or modified

GMNS algorithms, and hence the principal subspace matrix of X. We refer the reader

to [32] for further details.
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3.3 Computational Complexity

For the sake of simplicity, we assume that standard algorithms for computing matrix

multiplication and matrix decompositions (like EVD, SVD, QR) are applied in this

work, while costs of transfer and synchronization between the DSP units are ignored.

In particular, to decompose a rank-p matrix of size n × n into factors, the standard

EVD requires a cost of O(n2p). Considering a non-square matrix of size n×m, the full

Householder QR algorithm is computed in 2nm2 − 2/3m3 flops, while the truncated

SVD typically needs nmp flops to derive a rank-p approximation by using the partial

QR decomposition. These methods are surveyed in [33]. To multiply a matrix A of

size n× p with a matrix B of size p×m, we consider the standard algorithm which is

to perform n dot products of rows in A and columns in B whose cost is O(nmp).

Now, we analyse the computational complexity of the modified and randomized

GMNS algorithms for PSA. The former consists of two main operations: (i) the trun-

cated SVD of X1 that is performed in nmp/k flops, and (ii) (k − 1) matrix products

of sub-matrices Xi with the right-singular vector matrix of X1 that requires nmp/k

flops. Therefore, the overall complexity is order of O(nmp/k). Meanwhile, the com-

putational complexity of original GMNS for PSA is order of O(n2(m + p)/k2). Since

m,n� p, the original and the modified GMNS algorithms have lower complexity than

that of the well-known method using EVD of the global covariance matrix that costs

O (n2(m+ p)) flops.

The randomized GMNS algorithm consists of three main operations: (i) estimating

a good sketch Y of X, (ii) orthonormalizing the columns of Y, and (iii) updating its
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subspace matrix. In the first operation, deriving a standard Gaussian matrix Ω ∈ Rm×l

and hence a good sketch Y ∈ Rn×l demand a cost of O(mnl). In the second operation,

QR decomposition, used to compute the orthogonal basis of Y, demands a cost of

2nl2 − 2/3l3 flops. In the last operation, two matrix products are used to compute

the matrix Ā and update WX, demanding a cost of nl(m + p) flops. In addition, the

algorithm uses the same order of complexity for estimating the subspace of Ā using

GMNS. Moreover, we can use the structured random matrix Ω using the subsampled

random FFT instead, to reduce the overall complexity. Specifically, it allows us to

compute the product of X and Ω in nm log(l) flops; and the row-extraction technique

to derive Q with a lower cost of O(k2(n + m)). We refer the reader to [27, Section

4.6] for further details. In conclusion, the overall complexity of the randomized GMNS

algorithm is O(nl(m+ p)/k) using the TSQR algorithm.
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Chapter 4

Proposed GMNS-based Tensor Decom-

position

4.1 Proposed GMNS-based PARAFAC

In this section, we derive a new implementation based on GMNS approach for per-

forming PARAFAC of three-way tensors.

Considering a three-way tensor X ∈ RI×J×K , PARAFAC of X can be expressed as

follows:

X = I ×1 A×2 B×3 C =
R∑
i=1

ai ◦ bi ◦ ci, (4.1)

whereR is the rank of the tensor, I is an identity tensor, A ∈ RI×R,B ∈ RJ×R and C ∈

RK×R are the factors (loading matrices).

Motivated by the advantages of GMNS and the ALS-based PARAFAC in Sec-

tion 2.2, we are interested in investigating a parallelization scheme for PARAFAC. The

proposed algorithm consists of four steps:

• Step 1: Divide tensor X into k sub-tensors X1, X2, . . . ,Xk;

• Step 2: Estimate the principal subspace matrix of each tensors: Wi = (Ci �

Ai)Qi using GMNS;

• Step 3: Obtain the loading matrices A,Q and B, thanks to some desired property
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of GMNS;

• Step 4: Update the loading matrix C.

The main difference between the GMNS-based and ALS-based PARAFAC algo-

rithms is in the way we compute factors Ai,Bi and Ci of each sub-tensor Xi. Specifi-

cally, instead of applying ALS for k sub-tensors, these factors can be obtained directly

from the principal subspace of each of the sub-tensors Xi, i = 2, 3, . . . , k. Therefore, we

need to apply ALS for only the first sub-tensor X1. Now, we will describe the algorithm

in details.

For the sake of simplicity, we assume that the given tensor X is divided into k

sub-tensors X1,X2, . . . ,Xk by splitting the loading matrix C in the similar way to

ALS-based PARAFAC. The corresponding matrix representation of sub-tensors and

their subspace matrices are also given by

Xi = (Ci �A)BT ,

Wi = (Ci �A)Qi,

where Qi ∈ RR×R is a full rank matrix.

First, using any specific PARAFAC algorithm, such as the ALS-based PARAFAC,

to compute the factors A1, B1, and C1 of X1, from

X1 = (C1 �A1)BT
1 ,

we obtain the two factors A ← A1 and B ← B1. In addition, the principal subspace
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matrix W1 of X1 can also be given as

W1 = (C1 �A1)Q1.

Therefore, the two rotation matrices Q1 and U1 can be obtained as

Q1 = (C1 �A1)#W1, (4.2a)

U1 = W#
1 X1. (4.2b)

From now, the factors of Xi, i = 2, . . . , k, can be derived directly from their principal

subspace matrices Wi of Xi, as

Wi = XiU
#
1 , (4.3a)

Ci �Ai = WiQ
−1
1 . (4.3b)

The loading matrix Ai and Ci are then be easily recovered, thanks to the Khatri-

Rao product. In parallel, the loading matrix Bi can be updated as follows:

Bi = XT
i (W#

i )TQT
1 . (4.4)

The next step is to rotate the loading matrix Ai,Bi and Ci according to (2.4). The

factors of the overall PARAFAC are then obtained as

A← A1,B← B1,

C←
[
CT

1 CT
2 . . . CT

k

]T
. (4.5)

The proposed GMNS-based PARAFAC algorithm is summarized in Algorithm 5.
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Algorithm 5: Proposed GMNS-based PARAFAC

Input: Tensor X ∈ RI×J×K , target rank R, k DSP units

Output: Factors A ∈ RI×R,B ∈ RJ×R and C ∈ RK×R

1 Initilization

2 Divide X into k sub-tensors X1,X2, . . . ,Xk

3 Apply ALS to compute A1,B1 and C1 of X1

4 Extract principal subspace W1 of X1 using SVD

5 Compute rotation matrix Q1 = (C1 �A1)#W1

6 Main Update factors of other sub-tensors

7 // updates can be done in parallel

8 for i = 2→ k do

9 Extract principal subspace Wi of Xi using SVD Compute Ci and Ai // (4.3)

10 Compute Bi // (4.4)

11 Rotate Ai,Ci and Bi // (2.4)

12 return A,B,C // (4.5)

Remark

In the case of tensors with K ' I × J , the GMNS-based PARAFAC algorithm can

be implemented more efficiently. Matrix representation of the overall tensor and its

sub-tensors can be expressed, respectively, as

X = C(B�A)T and Xi = Ci(B�A)T . (4.6)

Therefore, the factors can be computed more easily. Specifically, the principal subspace

of Xi can be given by

Wi = CiQi.
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Figure 4.1: Higher-order singular value decomposition.

Meanwhile, the rotation matrices are updated in a way similar to the above, as

U1 = W#
1 X1,

Q1 = C#
1 W1.

Therefore, the sub-factors Ci are obtained by

Wi = XiU
#
1 ,

Ci = WiQ
−1
1 .

As a result, the loading matrix C is updated while A and B are computed from X1.

4.2 Proposed GMNS-based HOSVD

In this section, we investigate a parallelization scheme for HOSVD of three-way tensors

based on GMNS.

Let us consider a three-way tensor X ∈ RI×J×K . Tucker decomposition of X can
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be expressed as

X = G ×1 A×2 B×3 C

=

R1∑
i=1

R2∑
j=1

R3∑
k=1

Gi,j,kai ◦ bj ◦ ck,

where A ∈ RI×R1 , B ∈ RJ×R2 and C ∈ RK×R3 are loading factors, G ∈ RR1×R2×R3 is

the core of X with R1 ≤ I, R2 ≤ J and R3 ≤ K.

HOSVD, also called Tucker1, is a specific Tucker decomposition with orthogonal

factors which are derived from singular vectors of the three matrices unfolding X

according to its three modes. In general, Tucker decomposition is not unique (see [11,

Section V] or [12, Section IV]). Fortunately, the subspaces spanned by the factors A,

B and C are physically unique. It means that these factors can be rotated by any full

rank matrix Q. In turn, this multiplies the core tensor by its inverse. It is of interest

here that GMNS may be used to find multilinear subspaces of tensors, hence used for

HOSVD.

Similar to GMNS-based PARAFAC, tensor X is divided into k sub-tensors X1, X2,

. . . ,Xk whose corresponding matrix representations are

Xi = CiG(B⊗A)T .

We exploit the fact that factors are derived from the principal components of three

modes. Thus, to estimate subspaces for A,B and C, we can apply the method based
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on calculating the covariance matrix of the tensor, that is,

RX = E{XXT}

= E{CG(B⊗A)T (B⊗A)GTCT}

= E{CGGTCT} = CRGCT

EVD
= WΛWT .

It is therefore essential to demonstrate that the principal subspace matrix carries in-

formation of these factors, that is,

W = CQ,

where Q ∈ RR3×R3 is unknown full rank matrix.

We can derive all these factors by using the original GMNS algorithm for PSA or the

modified and randomized GMNS algorithms proposed in this thesis. In this thesis, we

illustrate this by using the proposed modified GMNS algorithm. Specifically, assume

that we first obtain the factors A1,B1, and C1 of the sub-tensor X1 which can be

derived from the original HOSVD, or alternatively the original higher order orthogonal

iteration of tensors (HOOI) decomposition.

Then, by using GMNS to estimate the principal subspace matrices of the sub-

tensors, we can obtain the decomposition. Specifically,

U1 = C#
1 X1, (4.7)

where the matrix U1 presents the right singular vectors of X1. As shown in Section 4.1,

we have to rotate sub-factors Ci to follow the direction of C1. Instead of computing
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Algorithm 6: Proposed GMNS-based HOSVD

Input: Tensor X ∈ RI×J×K , target rank R, k DSP units

Output: Factors A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R

1 function

2 Divide X into k sub-tensors X1,X2, . . . ,Xk

3 Compute factors of X1’s using HOSVD {A1,B1,C1} = HOSVD(X1)

4 Compute rotation matrix: U1 = C#
1 X1

5 Update factors using modified GMNS algorithm

6 // updates can be done in parallel

7 for i = 2→ k do

8 Compute Ci = X (3)
i U#

1

9 return A← A1,B← B1 and C← [CT
1 ,C

T
2 , . . . ,C

T
k ]T

the rotation matrices Ti, we dedicate the work to projecting matrices Xi into the row

space U1 of X1, as

Cj = XjU
#
1 . (4.8)

As a result, the subspace generated by the loading factors Ai and Bi remains constant.

The overall loading matrices can be updated as

A← A1,B← B1, (4.9a)

C← [CT
1 CT

2 . . . CT
k ]T . (4.9b)

The core tensor G can be also computed as

G = X ×1 AT ×2 BT ×3 CT . (4.10)

The implementation of the proposed GMNS-based HOSVD is summarized in Al-

gorithm 6.
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Chapter 5

Results and Discussions

In this chapter, numerical simulation is done to compare the performance of the pro-

posed GMNS-based algorithms for PSA and tensor decomposition with the state-of-

the-art methods. Some application-based scenarios are also presented to illustrate the

effectiveness of the proposed methods.

5.1 GMNS-based PSA

We follow experiments and evaluation metrics used in [19]. Specifically, the measure-

ment data X = AS are generated by a random system matrix A and a signal matrix S.

The received data are then normalized by its Frobenius norm. The impact of noise on

algorithm performance is also investigated by adding noise N derived from the white

Gaussian noise N (0, σ2), by

X =
X

‖X‖ + σ
N

‖N‖ .

The SNR is defined as

SNR = −10 log10 σ
2.
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(a) SEP vs. SNR: p = 2
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(b) SEP vs. SNR: p = 50
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(c) EEP vs. SNR: p = 2
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(d) EEP vs. SNR: p = 50

Figure 5.1: Effect of number of sources, p, on performance of PSA algorithms; n = 200,
m = 500, k = 2.

To evaluate the subspace estimation accuracy, we use the subspace estimation perfor-

mance (SEP) metric

SEP =
1

L

L∑
1

tr{WH
i (I−WexW

H
ex)Wi}

tr{WH
i (WexWH

ex)Wi}
, (5.1)
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Figure 5.2: Performance of the proposed GMNS algorithms for PSA versus the number
of sources p, with n = 200,m = 500 and k = 2.

and the eigenvector estimation performance (EEP) metric, also referred to as Root

Means Square Error,

EEP =
1

L

L∑
1

‖Ui −Uex‖2
F , (5.2)

where L is the number of Monte Carlo runs, Wi and Ui denote the estimated sub-

space and eigenvector matrix at ith run, Wex and Uex denote the true subspace and

eigenvector matrix, respectively. We note that the lower SEP and EEP are, the better

performance algorithms provide.

In this work, we compare and analyze the performance of the state-of-the-art meth-

ods for PSA, based on: SVD, randomized SVD [27], original GMNS, modified GMNS

and randomized GMNS. The number of Monte Carlo run is fixed at L = 100.

5.1.1 Effect of the number of sources, p

We change the number of source p while fixing the number of sensors, number of time

observations and number of DSP units at n = 200, m = 500 and k = 2, respectively.
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Figure 5.3: Performance of the proposed GMNS algorithms for PSA versus the number
of DSP units k, SEP vs. SNR with n = 240,m = 600 and p = 2.

As shown in Figure 5.1, when dealing with a specific p, the modified and randomized

GMNS-based algorithms provided similar performance compared to algorithms based

on original GMNS, SVD and randomized SVD, in terms of SEP and EEP. In partic-

ular, at low SNRs (≤ 10 dB), the SVD-based algorithm yielded the better subspace

estimation accuracy than GMNS-based ones, but only slightly. Meanwhile, at high

SNRs (> 10 dB), when the impact of noise is reduced, all methods performed the

same. As shown in Figure 5.2, there is little difference in subspace estimation accuracy

among the original, modified and randomized GMNS-based algorithms when changing

the number of sources p, excepting the case of the modified GMNS-based one with

small p at SNR = 10 dB. However, the result is still reasonable when compared to the

conventional SVD-based algorithms.

5.1.2 Effect of the number of DSP units, k

In the similar way, we consider how the number of DSP units affects algorithm per-

formance of the methods by fixing n = 240, m = 600, and p = 2 while changing k.
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(a) SEP vs. SNR: k = 2
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(b) SEP vs. SNR: k = 10
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(c) EEP vs. SNR: k = 2
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(d) EEP vs. SNR: k = 10

Figure 5.4: Effect of number of DSP units, k, on performance of PSA algorithms;
n = 240,m = 600, p = 20.

The experimental results indicated that increasing k resulted in slightly reduced SEP.

In particular, when the system A is divided into a small number of sub-systems with

k < 10, all algorithms provided almost same subspace estimation accuracy, as shown

in Figure 5.3. When k is large, the randomized GMNS-based algorithm yielded a same

result as the SVD-based and randomized SVD-based algorithms, while a slightly better

than that of the original and modified GMNS-based algorithms, as shown in Figure 5.4.

33



0 10 20 30 40 50
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E
P

Subspace Estimation

 

 

SVD

randomized SVD

GMNS

modified GMNS

randomized GMNS

(a) SEP vs. SNR: n = 50, m = 100
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(b) SEP vs. SNR: n = 200, m = 1000
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(c) EEP vs. SNR: n = 50, m = 100
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(d) EEP vs. SNR: n = 200, m = 1000

Figure 5.5: Effect of matrix size, (m,n), on performance of PSA algorithms; p = 2,
k = 2.

5.1.3 Effect of number of sensors, n, and time observations,

m

We fixed the number of DSP units and sources at k = 2, p = 2 and varied the size of the

data matrix. The results, as shown in Figure 5.5, indicated that all methods provided

the same subspace estimation accuracy. However, in terms of runtime, as mentioned

previously in Section 3.3, it can be seen from the Figure 5.6 that, when the data matrix

is small (n,m ≤ 1000), all the GMNS-based algorithms took the similar amount time
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Figure 5.6: Effect of data matrix size, (n,m), on runtime of GMNS-based PSA algo-
rithms; p = 20, k = 5.

to obtain the same accuracy. When dealing with matrices of higher dimension, the

modified GMNS-based algorithm was faster.

5.1.4 Effect of the relationship between the number of sensors,

sources and the number of DSP units

As mentioned above, the GMNS and modified GMNS-based PSA may be useful for

only data measurements under the condition p < n/k, meanwhile the randomized

GMNS-based approach was proposed to handle the rest. The key idea is (1) to choose

the number of random vectors so that n < k.p ≤ l, so the problem will return the

original setup, or (2) to structure the random matrix using the subsampled random

FFT, thanks to advantages of spectral domain. We fixed the size of the data matrix

at n = 150,m = 500, and k = 2. The number of random vectors are set at l = 2p. As

we can see from Figure 5.7, the randomized GMNS can be useful for the problem, as

shown via the green line.
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Figure 5.7: Performance of the randomized GMNS algorithm on data matrices with
k.p > n, k = 2.

5.2 GMNS-based PARAFAC

We simulated tensors X ∈ RI×J×K , derived from the Gaussian distribution N (0, 1).

The tensors were then normalized and added by a random noise N with a parameter

σ to control the noise level

Y =
X
‖X‖ + σ

N
‖N ‖ .

To assess the estimated factors, we use the metric of relative error, ρ, as given by

ρ(H) =
1

L

L∑
i=1

‖Hi −Hex‖
‖Hex‖

, (5.3)

where L is the Monte Carlo run, Hi and Hex are estimated and true factors respectively.

Our experiments are implemented in MATLAB 2015b on Intel core i7 processor

and 8G RAM machine using the tensor toolbox [34]. Four kinds of PARAFAC algo-

rithms are compared: Simultaneous Diagonalization computed by QR iteration-based
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(b) Loading matrix B
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(c) Loading matrix C

Figure 5.8: Effect of noise on performance of PARAFAC algorithms; tensor size =
50× 50× 60, rank R = 5.

PARAFAC, namely SDQZ-based PARAFAC [35], original ALS-based PARAFAC [26],

parallel ALS-based PARAFAC developed in [23] and described in Section 2.2 and our

proposed GMNS-based PARAFAC. The number of Monte Carlo run is fixed at L = 100.

5.2.1 Effect of Noise

We study the effect of noise on the performance of the PARAFAC algorithms at dif-

ferent values of SNR. The tested tensor has size of 100 × 100 × 120 and rank of 10.
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Figure 5.9: Effect of number of sub-tensors on performance of GMNS-based PARAFAC
algorithm; tensor rank R = 5.

As shown in Figure 5.8, our GMNS-based PARAFAC algorithm performed similarly

to the other ALS-based PARAFAC algorithms. At low SNR (≤ 15dB), they were all

better than SDQZ-based PARAFAC. At high SNR, all algorithms yielded almost the

same results in terms of relative estimation error.

5.2.2 Effect of the number of sub-tensors, k

Consider two tensors with size of 50×50×60 and 100×100×120. The SNRs are fixed

to 20 dB and 50 dB. Assume that the tensors are divided into sub-tensors by splitting

the loading matrix C. The number of sub-tensors varied in the range [1, k/ rank(X )],

while still being required to maintain the conditions of uniqueness of PARAFAC. The

experimental results are shown in Figure 5.9 and Figure 5.10. It can be seen that,

in general, the higher the number of sub-tensors was, the lower the performance of

the GMNS-based PARAFAC algorithm, with or without noise. Intuitively, this is a

trade-off between complexity and accuracy over the number of DSP units. However,
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Figure 5.10: Effect of number of sub-tensors on performance of GMNS-based
PARAFAC algorithm; tensor size = 50× 50× 60, rank R = 5.

the difference was little.

5.2.3 Effect of tensor rank, R

Consider two tensors with size of 50 × 50 × 60 and 100 × 100 × 120. The number of

sub-tensors is fixed k = 2. The results are shown in Figure 5.11. Generally, the higher

the rank of the tensor was, the lower the performance of the GMNS-based PARAFAC

algorithm resulted. Under the effect of noise, the algorithm still provided a reasonable
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Figure 5.11: Effect of tensor rank, R, on performance of GMNS-based PARAFAC
algorithm.

estimation accuracy for tensors of small rank; R(X1) < 30 or R(X2) < 50. However,

there was an unprecedented rise in error if the tensor rank became greater a specific

threshold of n/k. Therefore, choosing k plays a vital role in decomposing a tensor with

a given rank.

5.3 GMNS-based HOSVD

To study the performance of the proposed GMNS-based HOSVD, we investigate three

main application-based scenarios: best low-rank tensor approximation, tensor-based

principal subspace estimation, and tensor-based dimensionality reduction.

5.3.1 Application 1: Best low-rank tensor approximation

A performance comparison of Tucker decomposition with different initialization meth-

ods is provided via simulation study. In particular, we consider three algorithms to

initialize loading factors: original HOSVD, GMNS-based HOSVD and a method that
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factors are chosen randomly (legend = RAND) [12]. After that, the alternating least

square (ALS) algorithm is applied to obtain the best low-rank approximation of tensors.

Two performance metrics are used: tensor core relative change (TCRC) and sub-

space relative change (SRC). They are defined as

TCRC(k) =
‖G(k) − G(k−1)‖
‖G(k−1)‖ , (5.4)

SRC(k) =

∑N
i=1‖U

(k)
i (U

(k)
i )T −U

(k−1)
i (U

(k−1)
i )T‖∑N

i=1‖U
(k−1)
i (U

(k−1)
i )T‖

, (5.5)

where N is the number of modes (fibers), G(k) and U
(k)
i are the estimated tensor core

and factors at the k-th iteration step.

We use three tensors to assess algorithm performance: two synthetic tensors and

one real tensor from the Coil20 database [5]. The two synthetic tensors X1 of size

50 × 50 × 50 and X2 of size 400 × 400 × 400 were randomly generated from the zero-

mean, unit-variance Gaussian distribution. They were then compressed into a tensor

core G1 of 5 × 5 × 5. The Coil20 database is composed of 9 subjects with 72 different

images. We formed a real tensor X3 of size 128× 128× 648, associated with a tensor

core G2 of size 64× 64× 100.

The convergence results are shown in Figure 5.12 and Figure 5.13. As we can see

that, for the small synthetic tensor, the GMNS-based HOSVD algorithm converged

fastest, while still providing a good performance, in terms of TCRC and SRC (≈ 10−15).

For the big synthetic tensor, all algorithms provided similar performance, but the

GMNS-based algorithm yielded better performance with a faster convergence than

that of the original HOSVD and the random-based algorithms, as shown clearly in

Figure 5.12 (c) and (d) . In the case of the real data, all algorithms provided the same
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(a) TCRC for X1 of size 50× 50× 50
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(b) SRC for X1 of size 50× 50× 50
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(c) TCRC for X2 of size 400× 400× 400

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Number of Iterations

S
R
C

 

 

HOSVD

GMNS−based HOSVD

RAND

(d) SRC for X2 of size 400× 400× 400

Figure 5.12: Performance of Tucker decomposition algorithms on random tensors, X1

and X2, associated with a core tensor G1 size of 5× 5× 5.

performance in term of TCRC and SRC with a fast convergence.

5.3.2 Application 2: Tensor-based principal subspace estima-

tion

We investigate the use of GMNS-based HOSVD, original HOSVD, modified GMNS,

and SVD for principal subspace estimation. Tensor-based subspace estimation was
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(a) TCRC for X of size 128× 128× 648
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Figure 5.13: Performance of Tucker decomposition algorithms on real tensor obtained
from Coil20 database [5]; X of size 128 × 128 × 648 associated with tensor core G2 of
size 64× 64× 100.

introduced in [36], wherein it was proved that the HOSVD-based approach improved

subspace estimation accuracy and was better than conventional methods, like SVD,

if the steering matrix A satisfies some specific conditions. Inspired by this work, we

would like to see how the proposed GMNS-based HOSVD algorithms work for principal

subspace estimation.

For the sake of simplicity, we assume that the measurement X can be expressed by

matrix and tensor representations as

X = AS + σN,

X = A×R+1 ST + σN ,

where the steering matrix A and tensor A can be expressed by two sub-systems A1
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Figure 5.14: HOSVD for PSA

and A2 as

A = A1 �A2,

A = I ×1 A1 ×2 A2.

The multidimensional version of the true subspace W in the matrix case can be

defined as

U = G ×1 U1 ×2 U2, (5.6)

where G denotes the core of tensor X , U1 and U2 are two (truncated) loading factors

derived by a specific algorithm for Tucker decomposition, such as the original HOSVD,

the GMNS-based HOSVD, and the HOOI algorithms.

In this work, we follow experiments set up in [36]. The array steering tensor A

and the signal S were derived from the random zeros-mean, unit-variance Gaussian

distribution in the same way presented in Section 5.1. The experimental results are

shown in Figure 5.14. It can be seen that the GMNS-based HOSVD algorithm provided
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(a) SVD: n = 40, RMSE =
0.0036

(b) SVD: n = 30, RMSE =
0.0059

(c) SVD: n = 20, RMSE = 0.01

(d) T-HOSVD: n = 40, RMSE =
0.0129

(e) T-HOSVD: n = 30, RMSE =
0.0166

(f) T-HOSVD: n = 20, RMSE =
0.0328

(g) ST-HOSVD: n = 40, RMSE
= 0.0127

(h) ST-HOSVD: n = 30, RMSE
= 0.0164

(i) ST-HOSVD: n = 20, RMSE
= 0.0326

(j) GMNS-based HOSVD: n =
40, RMSE = 0.0129

(k) GMNS-based HOSVD: n =
30, RMSE = 0.0166

(l) GMNS-based HOSVD: n =
20, RMSE = 0.0328

Figure 5.15: Image compression using SVD and different Tucker decomposition algo-
rithms.

almost the same subspace estimation accuracy in terms of SEP as the HOSVD-based,

SVD-based and GMNS-based algorithms. Thus, the proposed GMNS-based HOSVD

algorithm can be useful for subspace-based parameter estimation.
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5.3.3 Application 3: Tensor based dimensionality reduction

We investigate the use of GMNS-based HOSVD, original truncated HOSVD (leg-

end = T-HOSVD), another truncated HOSVD [37] (legend = ST-HOSVD), and SVD

for compression of an image tensor with a fixed rank. The image tensor was obtained

from the Coil20 database.

The root mean square error (RMSR) is used as the performance metric and is

defined as

RMSE =
‖Are −Aex‖
‖Aex‖

, (5.7)

where Aex and Are are the true and reconstructed images, respectively.

The results are shown in Figure 5.15. Clearly, GMNS-based HOSVD provided the

same performance as truncated-HOSVD but slightly worse (w 0.2% in terms of RMSE)

than ST-HOSVD. The tensor-based approach for dimensionality reduction was much

worse than SVD-based approach on each single image.
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Chapter 6

Conclusions

In this thesis, motivated by advantages of the GMNS method, we proposed several

new algorithms for principal subspace analysis and tensor decompositions. We first in-

troduced modified and randomized GMNS-based algorithms for PSA with reasonable

subspace estimation accuracy. Then, based on these, we proposed two GMNS-based

algorithms for PARAFAC and HOSVD. Numerical experiments indicate that our pro-

posed algorithms may be a suitable alternative to their counterparts, as they can

significantly reduce the computational complexity while preserving reasonable perfor-

mance.

47



References

[1] L. T. Thanh, V.-D. Nguyen, N. Linh-Trung, and K. Abed-Meraim, “Three-way

tensor decompositions: A generalized minimum noise subspace based approach,”

REV Journal on Electronics and Communications, vol. 8, no. 1-2, 2018.

[2] ——, “Robust subspace tracking for incomplete data with outliers,” in The

44th IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). Brighton, UK: IEEE, May 2019 [Submitted].

[3] L. T. Thanh, A. D. Nguyen Thi, N. Viet-Dung, L.-T. Nguyen, and A.-M. Karim,

“Multi-channel eeg epileptic spike detection by a new method of tensor decompo-

sition,” IOP Journal of Neural Engineering, Oct. 2018 [Submitted].

[4] N. T. Anh-Dao, L. T. Thanh, and N. Linh-Trung, “Nonnegative tensor decom-

position for eeg epileptic spike detection,” in the 5th NAFOSTED Conference on

Information and Computer Science (NICS). IEEE, Nov. 2018, pp. 196–201.

[5] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia University Image Library

(COIL-20),” 1996. [Online]. Available: http://www.cs.columbia.edu/CAVE/

software/softlib/coil-20.php

[6] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile networks and appli-

cations, vol. 19, no. 2, pp. 171–209, 2014.

48

http://www.cs.columbia.edu/ CAVE/ software/ softlib/coil-20.php
http://www.cs.columbia.edu/ CAVE/ software/ softlib/coil-20.php


[7] E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, and B. Yener, “Multiway analysis

of epilepsy tensors,” Bioinformatics, vol. 23, no. 13, pp. i10–i18, 2007.

[8] C.-F. V. Latchoumane, F.-B. Vialatte, J. Solé-Casals, M. Maurice, S. R.

Wimalaratna, N. Hudson, J. Jeong, and A. Cichocki, “Multiway array decompo-

sition analysis of EEGs in Alzheimer’s disease,” Journal of neuroscience methods,

vol. 207, no. 1, pp. 41–50, 2012.

[9] F. Cong, Q.-H. Lin, L.-D. Kuang, X.-F. Gong, P. Astikainen, and T. Ristaniemi,

“Tensor decomposition of EEG signals: a brief review,” Journal of neuroscience

methods, vol. 248, pp. 59–69, 2015.

[10] V. D. Nguyen, K. Abed-Meraim, and N. Linh-Trung, “Fast tensor decompositions

for big data processing,” in 2016 International Conference on Advanced Technolo-

gies for Communications (ATC), Oct 2016, pp. 215–221.

[11] N. D. Sidiropoulos, L. D. Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and

C. Faloutsos, “Tensor decomposition for signal processing and machine learning,”

IEEE Transactions on Signal Processing, vol. 65, no. 13, pp. 3551–3582, July 2017.

[12] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM

review, vol. 51, no. 3, pp. 455–500, 2009.

[13] L. Tran, C. Navasca, and J. Luo, “Video detection anomaly via low-rank and

sparse decompositions,” in 2012 Western New York Image Processing Workshop

(WNYIPW). IEEE, 2012, pp. 17–20.

[14] X. Zhang, X. Shi, W. Hu, X. Li, and S. Maybank, “Visual tracking via dynamic

49



tensor analysis with mean update,” Neurocomputing, vol. 74, no. 17, pp. 3277–

3285, 2011.

[15] H. Li, Y. Wei, L. Li, and Y. Y. Tang, “Infrared moving target detection and track-

ing based on tensor locality preserving projection,” Infrared Physics & Technology,

vol. 53, no. 2, pp. 77–83, 2010.

[16] S. Bourennane, C. Fossati, and A. Cailly, “Improvement of classification for hyper-

spectral images based on tensor modeling,” IEEE Geoscience and Remote Sensing

Letters, vol. 7, no. 4, pp. 801–805, 2010.

[17] N. Renard and S. Bourennane, “Dimensionality reduction based on tensor mod-

eling for classification methods,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 47, no. 4, pp. 1123–1131, 2009.

[18] H. Fanaee-T and J. Gama, “Event detection from traffic tensors: A hybrid model,”

Neurocomputing, vol. 203, pp. 22–33, 2016.

[19] V. D. Nguyen, K. Abed-Meraim, N. Linh-Trung, and R. Weber, “Generalized

minimum noise subspace for array processing,” IEEE Transactions on Signal Pro-

cessing, vol. 65, no. 14, pp. 3789–3802, July 2017.

[20] A. H. Phan and A. Cichocki, “PARAFAC algorithms for large-scale problems,”

Neurocomputing, vol. 74, no. 11, pp. 1970–1984, 2011.

[21] A. L. de Almeida and A. Y. Kibangou, “Distributed computation of tensor decom-

positions in collaborative networks,” in 2013 IEEE 5th International Workshop on

Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE,

2013, pp. 232–235.

50



[22] A. L. De Almeida and A. Y. Kibangou, “Distributed large-scale tensor decompo-

sition,” in 2014 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2014, pp. 26–30.

[23] V. D. Nguyen, K. Abed-Meraim, and L. T. Nguyen, “Parallelizable PARAFAC de-

composition of 3-way tensors,” in 2015 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), April 2015, pp. 5505–5509.

[24] K. Shin, L. Sael, and U. Kang, “Fully scalable methods for distributed tensor

factorization,” IEEE Transactions on Knowledge and Data Engineering, vol. 29,

no. 1, pp. 100–113, Jan 2017.

[25] D. Chen, Y. Hu, L. Wang, A. Y. Zomaya, and X. Li, “H-PARAFAC: Hierarchi-

cal parallel factor analysis of multidimensional big data,” IEEE Transactions on

Parallel and Distributed Systems, vol. 28, no. 4, pp. 1091–1104, April 2017.

[26] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in multidimen-

sional scaling via an N-way generalization of “Eckart-Young” decomposition,” Psy-

chometrika, vol. 35, no. 3, pp. 283–319, 1970.

[27] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with randomness:

Probabilistic algorithms for constructing approximate matrix decompositions,”

SIAM Review, vol. 53, no. 2, pp. 217–288, 2011.

[28] M. W. Mahoney, “Randomized algorithms for matrices and data,” Foundations

and Trends R© in Machine Learning, vol. 3, no. 2, pp. 123–224, 2011.

[29] D. P. Woodruff, “Sketching as a Tool for Numerical Linear Algebra,” Foundations

and Trends R© in Theoretical Computer Science, vol. 10, no. 1–2, pp. 1–157, 2014.

51



[30] V. Rokhlin, A. Szlam, and M. Tygert, “A randomized algorithm for principal

component analysis,” SIAM Journal on Matrix Analysis and Applications, vol. 31,

no. 3, pp. 1100–1124, 2009.

[31] C. Boutsidis, P. Drineas, and M. Magdon-Ismail, “Near-optimal column-based

matrix reconstruction,” SIAM Journal on Computing, vol. 43, no. 2, pp. 687–717,

2014.

[32] A. R. Benson, D. F. Gleich, and J. Demmel, “Direct QR factorizations for tall-

and-skinny matrices in MapReduce architectures,” in 2013 IEEE International

Conference on Big Data, Oct 2013, pp. 264–272.

[33] N. Kishore Kumar and J. Schneider, “Literature survey on low rank approximation

of matrices,” Linear and Multilinear Algebra, vol. 65, no. 11, pp. 2212–2244, 2017.

[34] B. W. Bader, T. G. Kolda et al., “MATLAB Tensor Toolbox Version 2.6,”

Available online, February 2015. [Online]. Available: http://www.sandia.gov/

∼tgkolda/TensorToolbox/

[35] L. De Lathauwer, “A link between the canonical decomposition in multilinear alge-

bra and simultaneous matrix diagonalization,” SIAM Journal on Matrix Analysis

and Applications, vol. 28, no. 3, pp. 642–666, 2006.

[36] M. Haardt, F. Roemer, and G. Del Galdo, “Higher-order SVD-based subspace es-

timation to improve the parameter estimation accuracy in multidimensional har-

monic retrieval problems,” IEEE Transactions on Signal Processing, vol. 56, no. 7,

pp. 3198–3213, 2008.

52

http://www. sandia.gov/ ~ tgkolda/TensorToolbox/
http://www. sandia.gov/ ~ tgkolda/TensorToolbox/


[37] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, “A new truncation strat-

egy for the higher-order singular value decomposition,” SIAM Journal on Scientific

Computing, vol. 34, no. 2, pp. A1027–A1052, 2012.

53



Le Trung Thanh

Personal
Information

Advanced Institute of Engineering and Technology (+84) 853 008 712
VNU University of Engineering and Technology thanhletrung@vnu.edu.vn
707 Room, E3 Building, 144 Xuan Thuy, Hanoi, Vietnam ResearchGate

Research
Interests

Signal Processing

Education VNU University of Engineering and Technology, Hanoi, Vietnam

M.S., Communications Engineering, (12/2016 – 12/2018)

• Topic: GMNS-based Tensor Decomposition
• Advisor: Assoc. Prof. Nguyen Linh Trung

B.S., Electronics and Communications, (8/2012 – 7/2016)
International Standard Program, instructed in English

• Topic: EEG Epileptic Spike Detection Using Deep Belief Networks
• Advisor: Assoc. Prof. Nguyen Linh Trung

Professional
Experience

Research Assistant

• Advanced Institute of Engineering and Technology (AVITECH) 1/2018 – present
VNU University of Engineering and Technology

• Faculty of Electronics and Telecommunications, 7/2016 – 12/2017
VNU University of Engineering and Technology
Supervisor: Prof. Nguyen Linh Trung
Research Topics:
◦ Network Coding: Implementation of OFDM system over Software Defined Radio
◦ Deep Learning: EEG Epileptic Spike Detection Using Deep Learning
◦ Tensor Decomposition: GMNS-based Tensor Decomposition.
◦ Graph Signal Processing: Vertex-Frequency Processing Tools for GSP. (ongoing)
◦ Subspace Tracking: Robust Subspace Tracking for Missing Data with Outliers.

(ongoing)

Teaching Assistant

• Faculty of Electronics and Telecommunications, 8/2017 – present
VNU University of Engineering and Technology
Instructor: Prof. Nguyen Linh Trung
◦ ELT 2029 – Engineering Mathematics
◦ ELT 3144 – Digital Signal Processing

Refereed
Journal
Publications

1. Le Trung Thanh, Nguyen Linh Trung, Nguyen Viet Dung and Karim Abed-
Meraim. “Windowed Graph Fourier Transform for Directed Graph”. IEEE
Transactions on Signal Processing, [to submit Nov 2018].

2. Le Trung Thanh, Nguyen Thi Anh Dao, Viet-Dung Nguyen, Nguyen Linh-
Trung, and Karim Abed-Meraim. “Multi-channel EEG epileptic spike detection
by a new method of tensor decomposition”. IOP Journal of Neural Engineering,
Oct 2018. [under revision].

3. Le Trung Thanh, Nguyen Viet-Dung, Nguyen Linh-Trung and Karim Abed-
Meraim. “Three-Way Tensor Decompositions: A Generalized Minimum Noise
Subspace Based Approach.” REV Journal on Electronics and Communications,
vol. 8, no. 1-2, 2018.



4. Le Thanh Xuyen, Le Trung Thanh, Dinh Van Viet, Tran Quoc Long, Nguyen
Linh-Trung and Nguyen Duc Thuan. “Deep Learning for Epileptic Spike Detection”
VNU Journal of Science: Computer Science and Communication Engineering, vol.
33, no. 2, 2018.

Conference
Publications

1. Le Trung Thanh, Viet-Dung Nguyen, Nguyen Linh-Trung and Karim Abed-
Meraim. ‘Robust Subspace Tracking with Missing Data and Outliers via ADMM
”, in The 44th International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Brighton-UK, 2019. IEEE. [Submitted]

2. Nguyen Thi Anh Dao, Le Trung Thanh, Nguyen Linh-Trung, Le Vu Ha. “Nonne-
gative Tucker Decomposition for EEG Epileptic Spike Detection”, in 2018 NAFOS-
TED Conference on Information and Computer Science (NICS), Ho Chi Minh,
2018, pp.196-201. IEEE.

3. Le Trung Thanh, Nguyen Linh-Trung, Viet-Dung Nguyen and Karim Abed-
Meraim. “A New Windowed Graph Fourier Transform”, in 2017 NAFOSTED
Conference on Information and Computer Science (NICS), Hanoi, 2017, pp.150-
155. IEEE.

4. Le Trung Thanh, Nguyen Thi Anh Dao, Nguyen Linh-Trung and Ha Vu Le,
“On the overall ROC of multistage systems,” in 2017 International Conference
on Advanced Technologies for Communications (ATC), Quy Nhon, 2017, pp. 229-
234. IEEE.

5. Nguyen Thi Hoai Thu, Le Trung Thanh, Chu Thi Phuong Dung, Nguyen Linh-
Trung and Ha Vu Le.“Multi-source data analysis for bike sharing systems”, in 2017
International Conference on Advanced Technologies for Communications (ATC),
Quynhon, 2017, pp. 235-240. IEEE.

Technical
Skills

Computer Programming:

• C/C++, Python, R, Matlab, GNURadio

Awards and
Honors

Student Awards — VNU University of Engineering and Technology

1. Excellent Undergraduate Thesis Award, VNU-UET 2016

Contest Awards

1. Third Prize in National Physic Olympiad for Undergraduates, 2015
Vietnam Physical Society

2. Second Prize in Provincial Excellent Physics Students Contest, 2011–12
Nam Dinh Department of Eduction and Training, Vietnam

3. Third Prize in Provincial Excellent Informatics Students Contest 2010–11
Nam Dinh Department of Eduction and Training, Vietnam

Scholarships

1. Toshiba Scholarship, Toshiba Scholarship Foundation, Japan 2017-18

2. Yamada Scholarship, Yamada Foundation, Japan 2016

3. Odon Vallet Scholarship, Rencontres du Vietnam 2015

4. Tharal-InSEWA Scholarship Tharal-In sewa Foundation, Singapore 2015

5. Pony Chung Scholarship, Pony Chung Foudation, Korea 2014



Additional
Activities 1. Training Workshop on ”Advanced Technologies for 5G and Beyond” 5-6/2018

University of Danang.

2. The 3nd International Summer School 8/2017
Duy Tan University and British Council, Da Nang, Vietnam

3. Mini-course “Introduction to Data Science” 5/2017
Vietnam Institute for Advanced Study in Mathematics, Hanoi, Vietnam.

4. The 1st Research School on “Advanced Technologies for IoT Applications” 3/2017
University of Technology Sydney (UTS)
and VNU University of Engineering and Technology (VNU-UET).

5. Summer school on statistical machine learning 8/2015
Vietnam Institute for Advanced Study in Mathematic, Hanoi, Vietnam.

6. Intensive English Training C1 CEFR 2012–13
International Standard Program
VNU University of Languages and International Studies (VNU-ULIS).

References
Assoc. Prof. Nguyen Linh Trung

Advanced Institute of Engineering and Technology, (+84) 4 3754 9271
VNU University of Engineering and Technology linhtrung@vnu.edu.vn


	List of Figures
	Abbreviations
	Abstract
	Introduction
	Tensor Decompositions
	Objectives
	Contributions
	Thesis organization

	Preliminaries
	Tensor Notations and Definitions
	PARAFAC based on Alternating Least-Squares
	Principal Subspace Analysis based on GMNS

	Proposed Modified and Randomized GMNS based PSA Algorithms
	Modified GMNS-based Algorithm
	Randomized GMNS-based Algorithm
	Computational Complexity

	Proposed GMNS-based Tensor Decomposition
	Proposed GMNS-based PARAFAC
	Proposed GMNS-based HOSVD

	Results and Discussions
	GMNS-based PSA
	Effect of the number of sources, p
	Effect of the number of DSP units, k
	Effect of number of sensors, n, and time observations, m
	Effect of the relationship between the number of sensors, sources and the number of DSP units

	GMNS-based PARAFAC
	Effect of Noise
	Effect of the number of sub-tensors, k
	Effect of tensor rank, R

	GMNS-based HOSVD
	Application 1: Best low-rank tensor approximation
	Application 2: Tensor-based principal subspace estimation
	Application 3: Tensor based dimensionality reduction


	Conclusions
	References

